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Transition from shear to sideways diffusive 
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Stability of the steady motion of a fluid confined between two differentially heated 
rigid vertical plates is considered. When a stable, constant vertical salinity gradient 
is also present, the steady mean velocity in the vertical direction and the mean 
lateral salinity gradient are characterized by the solute Rayleigh number, R,. Experi- 
mental investigations (Elder 1965; Hart 1970) show that when R, = 0 the instability 
is induced by shear and occurs in the form of two-dimensional convection cells. 
However, at moderate values of R,, these shear instabilities are replaced by double- 
diffusive cellular convection (Thorpe, Hutt & Soulsby 1969; Paliwal & Chen 1980a). 
It is generally believed that the instability is stationary and cellular for all values of 
R, (Hart 1971 ; Paliwal & Chen 1980b). We have solved thegeneral eigenvalue problem, 
and our results indicate that, during transition from the stationary shear-induced 
instability to stationary double-diffusive cellular convection, overstable motion 
occurs. Furthermore, in this transition region, over a range of moderately small 
values of R,, there is no preferred wavelength at the onset of instability. 

1. Introduction 
Instability of a fluid layer bounded by two rigid differentially heated vertical plates 

has been the subject of considerable interest. Elder (1965) and Hart (1970) carried out 
experimental and theoretical investigations to study the onset of instability in a 
homogeneous fluid with lateral and vertical temperature gradients. For the case 
when the vertical temperatare gradient is negligible, if the temperature of one of 
the walls is raised slowly, the lateral temperature gradient will remain constant, and 
the isotherms would be parallel to the side walls. Their results show that at  the onset 
ofinstability, induced purely by shear, stationary two-dimensional rolls are formed. 

Another interesting phenomenon, the thermosolutal instability, occurs when a 
stable constant vertical salinity gradient is present in the fluid. The isohalines tend 
to become parallel with an upward slant towards the heated wall, except in the 
region near the walls where these lines are horizontal owing to the non-diffusive 
nature of the boundaries involved. In the interior region there may not be any net 
horizontal density gradient. However, any small lateral displacement of the fluid 
could lead to destabilization because of the difference in the diffusivity between heat 
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FIGURE 1 .  The co-ordinate system. 

and the solute. Experimental investigations by Thorpe et al. (1969), and Paliwal & 
Chen (19804 indicate that, at moderately large values of the solute Raylejgh number, 
R, (defined in $2), the instability manifests itself in the form of stationary two- 
dimensional rolls. Based on this, Hart (1971) and Paliwal & Chen (1980b) carried out 
linear stability analyses to study the transition from the shear-induced thermal in- 
stability to the double-diffusive thermosolutal instability. To obtain the neutral 
stability curves, they assumed that only stationary two-dimensional rolls are possible 
for all values of R,. 

In  this paper, we propose to show that, even though the instability occurs in the 
form of stationary two-dimensional convection cells at  very small and at  moderately 
large values of R,, there are ranges in the values of R,, where the motion is overstable 
at  the onset of instability. Also, for yet other values of R,, stationary convection sets 
in with no preferred wavelength. 

2. Formulation 
We consider an incompressible fluid layer bounded by two differentially heated rigid 

parallel plates separated by a distance D. The co-ordinate system is shown in figure 1. 
There is a constant salinity gradient, @,, = dSg/dz* in the vertical direction. The 
boundaries are considered to be non-diffusive to  salt and perfectly heat conducting 
with a temperature difference AT across them. The temperature gradient is constant 
in the lateral direction. For small variations in temperature and solute concentration, 
the equation of state can be written as 
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where 

is the coefficient of thermal expansion and 

is the coefficient of volumetric expansion. The subscript r indicates a suitable reference 
state and an asterisk indicates that the quantities are in dimensional form. Tempera- 
ture, salinity, pressure and density are respectively represented by T ,  S, P and p. 

The equations of continuity, momentum, and the transport equations of heat and 
solute for an incompressjble fluid with Boussinesq approximation are 

v.u* = 0,  (2.2) 

(2-3) 
1 

DT* Pr 

Du* -- - --VP*+VV~U*- [/3t(T*-T~)-P,(S*-Ss,W)]g*, 

-- - K,v2S*. DS* 
D7* 

In this set of equations, u* = (u*, v*, w*> is the velocity, g* = (0, 0, g> is the accelera- 
tion due to gravity, and 7 is time. The thermal diffusivity, the solute diffusivity and 
the kinematic viscosity are respectively represented by K ~ ,  K, and v. 

The boundary conditions are 

T* = f BAT, SE = 0,  u* = v* = w* = 0 a t  x* = T BD. (2.6) 

The pressure term in equation (2.3) is eliminated by cross-differentiation and (2.3)- 
(2.5) are made dimensionless with the scaling parameters D for length, D2/Kt for time, 
AT for temperature and D]Q0J for solute concentration. We further consider the 
motion to be two-dimensional in the x, z plane. The governing equations are 

Y - (R, a,T - R,a,S) = 0, 

(2.8) 

(2.7) 

(2.9) 

1 1 [K (8, +%a, + Wa,) (azz + 8.d - (a,, + 

[a, + a, + w a, - (a,, + a,)] T = 0,  

[a, + ua, + wa, - Le(a,, + a,)] 8' = 0, 

where Y! is the dimensionless stream function defined such that it satisfies w = Y, 
and u = - Y2, R, = g/3, A T D 3 / ~ ,  v is the thermal Rayleigh number, R, = gP,1 CD0/ D 4 / ~ t  v 
is the solute Rayleigh number, Pr = V / K ,  is the Prandtl number, and Le = .,/Kt is 
the Lewis number. 

The equations describing the stable steady state are obtained from (2.7)-(2.9), by 
assuming that the velocity is invariant in the z direction, and that the lateral velocity 
component is zero. The equations are 

(2.10) 

(2.11) 
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(2.12) 

with the boundary conditions 

Wo=Soz=O, T o = + +  at x = T + .  (2.13) 

The solution of (2.10)-(2.12) is 

Rt (sinh MI sin M2 - sin Ml sinh M2), (2.14) '' = 2MS(sin M + sinh M )  

To = - X, (2.15) 

(cosh Ml sin Mz - cosh M, sin Ml 
1 

=------ 
O, 4 2 M 4 [ ' +  sinM+sinhM 

- sinh MI cos M2+ sinh M2 cos Ml) (2.16) 1 
where 

i l l=(=),  Rs a M l =  (Mx+:) and M 2 =  

The variables Y,  T and S in  (2.7)-(2.9) are now written as a sum of mean (Yo, To, 8,) 
and the perturbed quantities ($, 0, s). The perturbations are then considered to be 
proportional to exp [ i a z  + CT], where a is the wavenumber in the z direction and is a 
real quantity, and u is the growth factor and is complex. The resulting linearized 
system of equations are 

ia tT 

Pr Pr 
(d2- a')'$ - -{Wo(d2- a') $ - $d2Wo} + (Rtde- R,ds) - - (d2  - a2) $ = 0, (2.17) 

( a 2  - ~ 2 )  e + i~$dTo - iaWoe - tTe = 0, 

Le(d2 - a2) s + ia$dS, - iaWos + dk - us = 0, 

(2.18) 

(2.19) 
where 

d 
dx 

d = -  and u =  ur+iui; 

$ = Y-Yo, 8 = T-To and s = S-So. 
also 

The boundary conditions are 

$ = d $ = B = d s = O  at x=+&. (2.20) 

3. Method of solution 
Following Chandrasekhar (1961), we expand the variables in (2.17)-(2.19) in terms 

of complete sets of orthogonal functions whieh satisfy the homogeneous boundary 
conditions in equation (2.20). We write 

Q1 

@ = 22 a*$p (3.1) 
j=1 

m 
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FIGURE 2. Evaluation of numerical convergence at  different values of the solute Rayleigh 
number R,. (a)  Number of terms: 6-16. ( b )  Number of terms: 16-30. ---, overstable; -, 
stationary. 

m 

s = I: cisj, 
j= l  

(3.3) 

cosjnx i f j  is odd, 

sin jnx i f j  is even, 
e ,= {  

cos ( j  - 1) nx if j is odd, 

sin(j- 1)nx i f j  is even, 
and pi are the zeros of 

tanh (Sp,) +tan ( $ p j )  = 0 i f j  is odd, 

coth (&pj)  -cot (&puj) = 0 Zj is even. 
These functions have been successfully used by Paliwal & Chen (1980b). A Galerkin 

method is used to solve the resulting formal expressions, by making them orthogonal 
to the functions themselves. A linear system of homogeneous algebraic equations for 
the unknown coefficients are obtained and these may be written in the form of 

(A - (TI) x = 0. (3.4) 
6 F L M  112 
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FIGURE 3. The neutral stability curve. Pr = 6.7  and Le = 1/101. 1 ,  0 f R,  < 0.45; 2, 
0.45 < R, < 3;  3, 3 < R, < 10; 4, 10 < R, < 60;  5 ,  60 < R,. --- , overstable; __ , sta- 
tionary. 

The vector x contains the unknown coefficients ai, b, and ci, and the matrix I is 
the identity matrix. 

The system of equations (3.4) can be solved as a general eigenvalue problem and, 
since this is accomplished numerically, this infinite set of equations is first made 
finite by suitable truncation. The eigenvalues, a, of this system of equations are 
then obtained by the modified LR algorithm of Martin & Wilkinson (1968a, b ) .  In 
general, the eigenvalue a is a function of the solute Rayleigh number, Rs, the thermal 
Rayleigh number, R,, the wavenumber, a, the Prandtl number, Pr, and the Lewis 
number, Le. The neutral states of these parameters occur when the condition 
max(o;} = 0 is satisfied, and these states are considered to be stationary, when the 
value of gi associated with max (a,} is zero, and overstable if it is non-zero (Chandra- 
sekhar 1961). In this analysis, the Prandtl number and the Lewis number are held 
constant at 6.7  and 1/101 respectively. These values correspond to that of a typical 
heat-salt system. Thus, to obtain the neutral stability curves, any two of the three 
remaining parameters, R,, R, and a are kept constant and the third is varied until a 
neutral state is obtained. 

The number of terms used in the expansions for computational purposes was 
determined based on an analysis for the numerical convergence of the results. Figures 
2 (a, b )  show the change in the value of the thermal Rayleigh number at neutral con- 
ditions due to changes in the number of terms used in the expansions for different 
values of solute Rayleigh number, R,. As shown in the figure, for values of R, at 

102 and lo6 the results indicate very good convergence even with eight terms. 
However, at  values of R, of 3 and 10, satisfactory convergence could be obtained only 
with 24 terms. The results reported in the following were all computed with 12 terms, 
except when 3 < R,$ < 10, for which case 24 terms were used. 
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FIQURE 4. Critical wavenumber as a function of the solute Rayleigh number. Other details are 
same as shown in figure 3. ---, overstable; -, stationary. 

4. Results and discussion 
The neutral stability curves are shown in figures 3 and 4. These curves are divided 

intp five regions. In regions 1 and 5 ,  the onset of instability is characterized by the 
formation of stationary two-dimensional rolls. As indicated by Hart (1970), in region 
1 the instability is stationary, and is induced by the shear with the energy for the 
perturbations coming from the mean velocity field. In region 5 ,  the instability is 
double-diffusive in nature, and the damping effect of the vertical stratification causes 
an increase in the critical wavenumber and the critical thermal Rayleigh number with 
an increase in the solute Rayleigh number. 

In  region, 2, however, we have shear instability with a sharp, but small, increase 
in the critical wavenumber. An increase in the value of R, is associated with an increase 
in the lateral salinity gradient, and this gradient in essence provides the restoring 
force needed for the overstable motion but not strong enough to trigger the double- 
diffusive mechanism. The magnitude of mean shear in this region is still substantial 
when compared to that in regions 4 and 5 (see Hart 1971; Paliwal & Chen 1980b). 
The neutral stability curves at  different values of solute Rayleigh number, R,, corres- 
ponding to regions 1 and 2 are shown in figure 5 .  As can be seen, when the value of 
R, = 0.1, the neutral curve is stationary throughout the region indicated in the figure. 
For all other values of R,, these curves are bimodal with stationary and overstable 
branches, and each with a separate and distinct minimum. The critical value, which 
is the smaller of these two minima, changes from stationary to overstable mode when 
the value of R, changes from 0.3 to 0.4, marking the transition from region 1 to region 
2 in the neutral curves indicated in figures 3 and 4. 

In region 3, the destabilization is still shear induced. However, the stationary 
branches that characterize the neutral curves are absent in this region and the motion 
is overstable at  the onset of instability. In addition, unlike that in region 2, the critical 
wavelength does not remain constant but increases with an increase in the value of R,. 

6-2 
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FIGURE 5.  Thermal Rayleigh number as a function of wavenumber showing the transition 
from region 1 t o  region 2. ---, overstable; -- , stationary. 1, R, = 0 , l ;  2, R, = 0.3; 3, 
R, = 0.4; 4, R, = 0 .5 ;  5 ,  R, = 10. 

In region 4, the destabilization occurs mainly due to the large difference in the 
equilibration times of heat and solute. Thus, thelateral motion of the fluid in the interior 
of the slot could create local sources of buoyancy causing instability. As shown in 
figure 3, the transition from the shear-induced, to the diffusive-type instability is very 
sharp with the critical value of the thermal Rayleigh number, R,, which changes from 
- lo4 to - 30 when R, changes from 10 to 11. This clearly shows that the temperature 
difference needed to destabilize a weak vertical solute gradient is, indeed, very small 
when the motion is driven by differential diffusion. Also it should be noted that the 
values of critical thermal Rayleigh number predicted here, are much smaller than 
those predicted by Hart (1970). This is mainly due to the fact that the corrections 
suggested by Paliwal & Chen (1980b) have been made in equation (3.3). Some neutral 
curves are shown in figure 7. As can be seen, for the value of R, corresponding to 
region 4, there is no preferred wavelength at  the critical state, indicating that the 
instability is not cellular in nature. 

It is of interest to note here that, for the case of double-diffusive convection in a 
vertical layer of porous medium, saturated with stratified salt solution and subject 
to differential heating, similar conclusions were arrived at  by Khan & Zebib (1981). 
In their analysis based on linear stability theory, they have shown that, for a finite 
range of values in R,, the neutral curves become flat, and, although the value of R,, 
is clearly defined in this region, there is no minimum value for the wavenumber. A t  
values of R, slightly larger than 60, the instability is cellular in nature with a pre- 
ferred wavelength. This critical wavelength is quite large in the neighbourhood of the 
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FIGURE 6. Thermal Rayleigh number as a function of wavenumber in 
region 3. - - - - -, overstable. 

transition from region 4 to 5. However, as the value of R, increases further, the 
damping effect produced by the increase in the solute gradient in vertical direction 
becomes pronounced, resulting in the decrease of the critical wavelength. 

5. Conclusions 
In conclusion, we have shown that, during transition frompurely thermal tothermo- 

solutal two-dimensional convection, the nature of the instability encountered is a 
strong function of the solutal Rayleigh number. As the value of R, is increased from 
zero, the stationary shear-induced instability is replaced by an oscillatory shear in- 
stability. A further increase in R, leads to stationary critical states without a preferred 
wavelength. This is followed by the doubly diffusive regime where the onset of in- 
stability is characterized by stationary two-dimensional cellular convection. 

The authors would like to acknowledge the financial support provided by the 
National Science Foundation, through Grant ENG 78-16962. 
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